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Curious Properties of Simple Random Walks 

S h e l o m o  I. B e n - A b r a h a m  I 
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A simple random walker on the line of integers shows remarkable similarities to 
relativistic particles. 

KEY WORDS:  Relativistic behavior of 1D random walks. 

Consider a particle performing an unrestricted random walk on the line 
of integers Z starting at the origin. Strictly speaking, one deals with an 
ensemble of random walkers; talking about a single one is just a convenient 
abbreviation. Let the probabilities of a step to the right and to the left be 
p and q, respectively (p + q = 1 ). After n steps, the expectation value of the 
particle's position is (1) 

with variance 

and standard deviation 

( x ( n ) )  = ( p - q ) n  (I)  

( Ax2(n) ) = 4pqn (2) 

)~ : =  ( z Jx2 ( /7 ) )  1/2 = 2(pqn) 1/2 (3) 

Since the random walk is unrelated to any other process, the intervals 
between successive steps are most naturally (though not necessarily) 
assumed to be equal. The jump interval ~ thus becomes the only available 
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natural unit of time and it can be set equal to unity. The number of steps 
n then directly measures time t. 

Motion to the right being taken as a positive, the drift velocity of the 
particle becomes 

v = p - q  (4) 

Thus, a particle performing a symmetric random walk has a drift velocity 
v = 0, and hence it is a t  rest .  At the other extreme, a particle moving to the 
right (left) with probability one has the drift velocity v = + 1 (v = - 1 ) ,  that 
is to say, of maximum absolute value. A random walk is therefore 
inherently associated with a limiting speed (which, by our choice of units, 
has magnitude 1). 

In terms of the drift velocity v, the probabilities p and q are 

l + v  1 - v  
P -  2 ' q =  2 (5) 

and Eqs. (1-3) become, respectively 

( x ( n ) )  = v . n  

( A x 2 ( n ) ) = ( 1 - v 2 ) n  

). = [-(1 - -  V 2 ) n ]  1/2 

(6) 

(7) 

(8) 

The standard deviation 2 measures the extension, or "smearing out," of a 
particle performing a random walk. For a particle at rest, 

). = n 1/2 =: )40 (9) 

while for a particle moving with speed v, we have 

~--- (1  - -  V2)1/2,~ 0 (10) 

We see that the moving particle undergoes a Lorentz contraction, which is 
most remarkable. We shall now investigate this more carefully. 

Again, on a line consider two independent random walkers 1 and 2 
with drift velocities v~ and v2, respectively. We only assume that the jump 
interval ~ is the same for both walkers (or particles). How does particle 1 
see particle 2, or, in other words, what is the relative motion of 2 with 
respect to 1? 

At an epoch, 1 takes a step to the right (left) with probability Pl (ql)- 
At the same time, 2 jumps to the right (left) with probability P2 ( q 2 ) .  
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Hence, with respect to 1, particle 2 takes a double step to the right of left 
with probabilities 

p:=p12=qlp2, q:=q12=plq2 (11) 

respectively. It may, however, also stay in place relative to 1, with 
probability 

r :=r12=plP2q-q lq2  (12) 

Obviously 

p + q + r = l  (13) 

It is worthwhile to note that only double steps are observable. Hence, 
two and only two kinds of particles are possible. At a given epoch, two 
particles are at sites of either the same or the opposite parity (that is, with 
an even or an odd number of steps between them). Particles with equal 
parities will collide with probability one, whereas those with opposite 
parities will never meet (though, with probability one, they will approach 
each other to one step). 

When both particles jump in the same direction no change is observed. 
It is amusing to imagine that the random walkers' notion of time is 
synonymous with something happening. Therefore, it is interesting to 
renormalize the probabilities p and q disregarding r. As a result, 1 sees 2 
as performing a random walk with probabilities 

P~2-  P Q12- q (14) 
p+q'  p+q 

Since this again represents an ordinary random walk, Eq. (10) holds, and, 
consequently, 1 sees 2 undergoing a Lorentz contraction 

222 = (1 - v2 ~/2~ (15) ~121 "~0 

where V12 = P~2- Q12 is the drift velocity of 2 relative to 1. 
Our reasoning is manifestly symmetric in 1 and 2. Thus, we conclude 

that the behavior of simple random walkers on a line indeed mimics 
relativistic kinematics. 

Now, we extend our calculation to include a third walker, 3, in order 
to study the observation of a moving particle from two different inertial 
frames. We take, arbitrarily, 1 and 2 to represent observers attached to 
inertial frames, while 3 shall represent a uniformly moving test particle. 
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With self-explanatory notations we have 

Vi~ Pkqi -  Piqk i, k = 1, 2, 3 (16) 
Pkqi + Piqk' 

From Eq. (16), with (ik) = (23), we obtain 

p2(1 + V23) 
P3 - (17) 

1 + V 2 3 ( P  2 - -  qz) 

q2(1 - V23 ) 
q3 - (18) 

1 + V23(p 2 - q2) 

After substituting P3, q3 from Eqs. (17), (18) into (16) with (ik) = (23) and 
a few elementary manipulations, we finally get 

V12 + V23 
V13 - 1 (19) 

"t- V12 V23 

which, indeed, is the relativistic addition formula for velocities. 
Now, it becomes clear that 1 and 2 observe 3 in agreement with 

special relativity. Indeed, assume that 1 is "at rest" while 2 is comoving 
with 3, that is, 

V12 = V13 = g~ V23 = 0 (20) 

In this case, 2 finds for the extension, or standard deviation, of 3 the value 
20, while 1 measures a smaller extension 213, given by Eq. (15), mutatis 
mutandis. 

Naturally, one asks the question whether the Fitzgerald time dilata- 
tion also applies. We observe that after the same number of steps, the 
extension of a moving particle is smaller than that of a particle at rest. 
Thus, intuition tells us that the moving particle's clock runs slow. Yet, if 
one tries to measure the time dilatation by comparing the extensions one 
comes up with a wrong answer, namely, one finds a factor of ( 1 - v  2) 
instead of (1 - -  152) 1/2. 

I do not have a convincing argument for proper relativistic behavior 
of random walkers in this respect. Yet I can contrive, albeit rather artifi- 
cially, a characteristic time with the correct velocity dependence. 

Consider the waiting times n+,  n for particles initially moving to the 
right and left, respectively, to reverse their headings. It is easy to calculate 
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their expectation values ( n + ) ,  ( n _ ) ,  variances (An2+), (An 2_), and 
standard deviations 0+,  0 �9 

( n + ) =  p, ~n ) = q  (21) 
q P 

q (22) 02+ = = P ,  02_ = ) 
= p 2  q 

Now, we define a characteristic period 0 for a particle by taking the 
geometric mean of 0+ and 0 , 

1 2 
0 := ( 0 + 0 _ )  1/2- - (23) (pq)V2 (1 _ v2)1/2 

or  

with 

00 
0 - (1 - v2) 1/2 (24) 

0o := O(v = 0) = 2 (25) 

We see that 0 indeed undergoes a Fitzgerald time dilatation. 
Thus, we see that simple random walkers on a line show a remarkable 

analogy to particles in the special theory of relativity. The reason for this 
is, of course, the existence of a limiting speed which is a priori built into the 
theory. 

Unfortunately, the results do not generalize to d (>  1) dimensions, 
since the "Lorentz contraction" turns out to be isotropic in space. 

It remains to be seen whether there is some deeper principle under- 
lying these speculations or whether they are to persist just as curiosities. 
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